Learning to Categorize Objects Using Temporal Coherence

نویسنده

  • Suzanna Becker
چکیده

The invariance of an objects' identity as it transformed over time provides a powerful cue for perceptual learning. We present an unsupervised learning procedure which maximizes the mutual information between the representations adopted by a feed-forward network at consecutive time steps. We demonstrate that the network can learn, entirely unsupervised, to classify an ensemble of several patterns by observing pattern trajectories, even though there are abrupt transitions from one object to another between trajectories. The same learning procedure should be widely applicable to a variety of perceptual learning tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Integration of Grounding Language and Learning Objects

This paper presents a multimodal learning system that can ground spoken names of objects in their physical referents and learn to recognize those objects simultaneously from naturally co-occurring multisensory input. There are two technical problems involved: (1) the correspondence problem in symbol grounding – how to associate words (symbols) with their perceptually grounded meanings from mult...

متن کامل

Evaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping

In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...

متن کامل

Unsupervised learning from videos using temporal coherency deep networks

In this work we address the challenging problem of unsupervised learning from videos. Existing methods utilize the spatio-temporal continuity in contiguous video frames as regularization for the learning process. Typically, this temporal coherence of close frames is used as a free form of annotation, encouraging the learned representations to exhibit small differences between these frames. But ...

متن کامل

A Brief Introduction to Cortical Representations of Objects

To understand how objects are recognized and represented in the human brain is still one of the ultimate goals of cognitive science. In this article, we will collect evidence from mainly neurophysiological studies which suggest that object recognition is achieved by hierarchical processing in the brain and that the representation of objects is distributed and view-based. Furthermore, these stud...

متن کامل

Depth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions

Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992